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Abstract. [n this paper we study the complete phase diagram of a model of interacting branched
polymers. The model we consider is a lattice anirmal one, where the collapse transition can be
driven both by 2 contact fugacity between two occupied nearest neighbours and by a fogacity
related to each occupied edge. Using a Potts model formulation of the problem we conjecture the
existence of two different vniversality classes for the & transitions (with thermal exponents, v and
¢, equalto (4, %)and (&, ﬁ)), separated by a higher-order percolation point. We also present
convincing numerical evidence for these exponent values using a transfer-matrix approach. We
discuss the possibility of 2 collapse—collapse transition and we predict the behaviour of ounr
model when an adsorbing surface is included.

1. Introduction

Linear polymers consist of monomers with a functionality of two. The study of such
polymers has witnessed great progress following the work of de Gennes [1,2]. This is
especially true in two dimensions, where many critical properties were determined using
Coulomb gas [3] or conformal invariance [4] methods. An area in which much progress was
made recently is that of the collapse of a linear polymer when the quality that the solution
decreases and the polymer passes through the so-called #-transition (or 6-point) [5, 6].

In contrast, much less is known about branched polymers (BP) which are made of
monomers of higher functionality. In lattice statistical mechanics, these BP are described
by lattice animals. Lattice animals in 4 dimensions can be related to the Yang-Lee edge
singularity in d — 2 dimensions [7]. Unfortunately, this technique does not allow a complete
determination of critical exponents in d = 2. There also exists evidence that lattice animals
may not be conformally invariant [8]. Still, quite accurate estimates of critical exponents
for d = 2 lattice animals can be found in the literature [9].

In the present paper we will study the collapse transitions that branched polymers in
two dimensions may undergo in dilute solution in a poor solvent when the temperature is
lowered. To be more specific, consider a lattice animal consisting of s occupied vertices
and b occupied edges, on, for example, a square lattice. We call a contact a pair of nearest-
neighbour occupied vertices which are not connected through an occupied edge (figure 1).
We denote the number of such contacts by 7. The model for the collapse of branched
polymers which we will study in this paper is defined by giving a weight x*y®z7 to such
an animal, Here x, y and T are fugacities for vertices, edges and contacts, respectively.
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Figure 1. An example of a [attice animal in a square lattice made of s = 23 sites, &b = 31
bonds, 7 = & contacts, { = 32 perimeter edges, m = 26 solvent contacts and ¢ = 7 cycles.

We are interested in the following quantities. First we define a partition function Z, as

Zy=Y Cepsy't! (L1)
b.f

where C, 4 ; is the number of distinct lattice animals (modulo translation) with s occupied
vertices, & occupied edges and J contacts, We expect that for large 5 and fixed y and 7, Z;
grows exponentially so that the dimensionless free energy per monomer is given by

1
fF=~1lim-logZ; =—logu (1.2)
=00 §

where . is a non-universal quantity which depends on the details of the lattice. As a
consequence, the grand-canonical partition function Z

zZ=Y xZ (1.3)

will have a critical point at x = x. = 1/¢ and then we can rewrite (1.2) as

f=logx(y, 1) (1.4)

where we have now explicitly denoted the dependence of x; on y and 7. Another quantity
of interest is a linear measure {R}, (e.g. we can take the radius of gyration} of an animal
of 5 occupied vertices (by {}, we denote the average over all animals with s vertices). As
usual, the asymptotic behaviour of this quantity defines the exponent v as

{R); ~s" 5 — 0o, (L.5)

For 1 = 0, contacts are forbidden (strong embeddings) and the lattice animals are
referred to as site animals. For this case our model coincides with the so-calied cycle
model for BP collapse (this name stems from the fact that the number of cycles, ¢, in the
animai is given by ¢ = & — 5 + 1, so that the weight of an animal in this case can also be
rewritten as z* y¢, with z = xy). Recently, it was argued by one of us (CV) that the collapse
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{or #-) transition in the cycfe model of BP is in the universality class of the tri-critical zero-
state Potts model [10]. For y (respectively x} = 1, we recover the so-called contact maodels
for the 8-transition of edge animals (weak embeddings) counted by vertices (resp. edges).
It can be argued that these models are more physical as collapse medels, and indeed they
are nahiral extension of such models for linear polymers (where one always has s = £+ 1),

It has been argued that the @-points of contact and cycle models may be in different
universality classes [11].

In the present paper we will study the phase diagram of the branched polymers for
general 7 using both analytic reasonings and transfer-matrix calculations. Indeed, we will
find strong evidence for the existence of two distinct universality classes separated by a
higher-order multicritical point which is described by percolation exponents. We will also
discuss the nature of the collapsed phase.

It is interesting to remark that for after a simple transformation our model reduces to a
model recently introduced by Flesia er al [12] and studied by those authors in the canonical
ensemble (our model, in fact, is studied in a grand-canonical ensemble). The phase diagram
which we obtain will look at first sight similar to the one proposed by these authors, but is
in fact different in several quantitative aspects.

This paper is organized as follows. In section 2 we show how our branched polymers
can be obtained as graphs in the high-temperature expansion of an appropriate Potts modei.
This relation was already derived by Coniglio some years ago [13]. We will supplement
his work with some new insights which can be obtained from more recent studies of Potts
models. In section 3 we will present the result of transfer-matrix calculations which will give
evidence for the existence of two distinct universality classes for the collapse of branched
polymers which in section 2 were conjectured to be the tri-critical zero-state Potts model and
the Ising model universality classes. In section 4 we discuss the collapsed phase. Finally,
in section 5, we present some concluding remarks, including the expected behaviour of the
interacting branched polymers near a surface.

2. The Potts model and branched polymers
The description of branched polymers using the Potts model has been introduced by several

authors in the past [14-17]. We now briefly recall their main results.
In the g-state Poits model [18, 19], one has at each site i of a lattice a ‘spin’ variable

which can be in any of ¢ different states or ‘colours’: ¢; = 1, ..., 4. To describe branched
polymers, we introduce the following reduced Hamiltoninan #p:
Hp =0 8oy + LY epbop+HY 851, Q.1

& @) ‘
Using standard high-temperature expansion techniques [19], 2 “partition function’ Z for

lattice animals can be obtained in the limit 4 — 1. One then finds in the thermodynamic
limit
Z =7 (pv)*exp(-Hs)(1 - pY (2.2)
(61}

where the set G contains all (unrooted) lattice animals with & occupied edges, s occupied
vertices and ¢ perimeter edges (a perimeter edge is an empty edge between an occupied
vertex and a nearest-neighbour vertex, which can be cccupied or empty); see figure 1. In
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equation (2.2), p=T1—exp(—J — LYand v = (expJ —1)/(exp(J + L)—1). Whenv =1
{or L = 0), f is equal to the usual generating function of bond percolation. It is well
known that, on the square lattice, bond percolation is critical for p = p. = % and H =0
[20]. The plane L =0, and in particular the line L = A = 0, will play a major role in our
further discussions and will be referred to as the percolation plane and the percolation line,
respectively.

For any animal we have the relation

ds=2b+1+1 (2.3)

(square lattice!!) which allows us to rewrite (2.2) as

Z=Y x'yr! 4
61
with
x=exp(—H—-4(J+ L)) (2.5a)
y =[exp(J)— 1]exp(J + L) (2.5b)
and
t=exp(J+L). (2.5¢)

Thus Z indeed coincides with the ‘partition function” for the interacting animal problem
introduced in the previous section, while the equations (2.5) express the fugacities of our
BP model in terms of the Potts—Hamiltonian parameters.

Next we turn briefly to the two-point correlation function which will also occur in the
transfer-matrix calculations (section 3). The two-point correlation function Iy for the Potts
mode] (2.1) is defined as

Ty = (aaglsa';l) - (5011)(5611) . (2-6}

Again using high-temperature expansion techniques, it can be shown that

= = Zx’ybr" (27)
=1 (G}

where the set G, contains all lattice animals that pass through both the sites k& and /.

It is our aim in this paper to study the phase diagram of the interacting BP as can be
derived from (2.4) and (2.7). In sections 2.1 and 2.2 we first give some results which can
be obtained from the relations derived so far and which can be considered to be exact.
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2.1. The role of the percolation plane

The percolation plane is given in terms of the fugacities x, y and by

y=1t—1, (2.8a)
The percolation line is given by the additional equation

x=1"* (2.8b)

Along this line the percolation threshold p = p, = %, H = 0 is located at 7 = 2,
and thus y = 2,x = 11—6. Within the percolation plane this point is fully repulsive in a
renormalization-group sense. The relevant scaling dimensions are well known by now [3]
andarey,:%,y;;:%é—.

More important however is the fact that, in the space of parameters of the Hamiltonian
(2.1), the percolation fixed point is fiully repulsive [21]. The third relevant scaling dimension
can be related to a magnetic exponent of the Potts model which is given by i—g. The role
played by this fully repulsive percolation fixed point will be further discussed below (section
2.4).

There is another limit for which the model (2.1) is solvable. Indeed, in the limit
H -> —o0, the probability that the Potis spin has ‘colour” 1 becomes 0, and thus the model
reduces to a (g — 1)-state Potts model . For the case of interest here (g — 1), we thus find

that for
H—»> —oo or xtt =00 (2.9)

the branched polymers are described by a zero-state Potts model. 1t is known that this
model describes spanning trees [19]. For values of the parameters x, y, T which satisfy
(2.9) our branched polymers will thus behave like trees which span the whole lattice. We
will investigate below when this is the case.

2.2. Results for the contact model of edge lattice animals

The information we have obtained so far can be applied to the contact model of edge
animals (counted by vertices, i.e. y = 1). For small 7 we expect that the critical exponents
of the animat are equal to those that were determined for non-interacting animals {5]. If we
increase T the animals will collapse at a critical value of T which we denote as 75,;. Using
the results of section 2.1 we can obtain a lower bound for 73 ; and some information on
the behaviour of the fully collapsed animals (r — o0). Fizst, the plane y = 1 intersect the
percolation line for

(2.10)

At this point, the percolation probability p equals (—1 4+ +/3)/(1 + +/3), less than the value
at the percolation threshold p, = 1.
Subcritical percolation clusters behave like branched polymers, and from this we obtain

a (non-rigorous) lower bound on the value 7 g, ie.

1 5
> +2f. 2.11)
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Figure 2. Projection of the phase diagram in the (y,7) plane. The arows indicate
renormalization-group flows. We have indicated three critical points: (1) percolation point,
(2) tricritical zero-state Potts point, and (3) Ising critical point. The full curve is the location
of supercritical percolation, while the dotted curve indicates subcritical percolation. The broken
carve is the line of theta transitions. The line at y = 1 is the the line along which our model
coincides with the contact model of site animals. In the plane r = 0 our model coincides with
the cycle model.

This inequality will indeed be satisfied by our transfer-matrix results.

Secondly, it can be shown that the condition (2.9) is satisfied for our model at
y = 1,7 — co. We thus amrive at the important conclusion that in the contact model,
edge animals collapse into spanning tree configurations. The proof is a simple consequence
of results obtained in [22]. In that reference it was shown that for y == 1 and for r — o0

lim ~f— = —1. (2.12)
t—co log T

Then, using (1.2} it follows that for the contact model of edge animals, x.(y = 1,1) ~
t~! when 7 — ©0. In that limit, condition (2.9) is therefore fulfilled and we conclude that
the critical, collapsed edge animals in the contact model become like spanning trees for
T —» 00. On the basis of renormalization-group (RG) ideas we may expect this to be true
everywhere in the collapsed phase when the animal is investigated at large enough scales.

In figure 2, which contains the phase diagram of the lattice animals as will be derived
in this paper, we show the knowledge we have obtained so far on the phase diagram of
the interacting lattice animals. We feel that at least this part can be considered as exact
(through non-rigorous) information. As we have discussed above, the percolation point is
fully repulsive in the (x, y, T)-parameter space, and thus two critical lines must come out of
the percolation plane at the percolation threshold. We don’t know the exact location of these
lines, neither have we, so far, any exact information on the pature of the transition along
these lines. Yet, as discussed below, we can obtain some conjectural information on these
lines, which will then be verified in the next section, using transfer-matrix calculations.
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2.3. The cycle model

As noted in the introduction, for ¥ = 0 we recover the cycle model of lattice animal
collapse. The collapse of branched polymers in this model was studied using the transfer-
mafrix technique [23]. The transition was located at x = xp. = 0.0230 + 0.004,
Yy = ¥so = 648 £ 0.12. The exponents at this #-point were determined numerically to
be vg,. = 0.5095 £ 0.003, ¢y = 0.657 £ 0.025.

In a recent letter [10] some new results were obtained for this model. First, it was
shown, using a mapping onto the vesicle model of Fisher ef al [24,25] that for y > yg .,
the equation of the critical line is x = y~2. Secondly, for the special case of branched
polymers without holes (which are also called discs [26]) the exact exponents at the #-paint
were determined as

Voo =3 boc=13. (2.13)

It is not completely clear whether this result still holds for animals with holes. In fact,
it has been shown recently [26] that the nature of the collapsed phase differs depending on
whether one includes holes or not. On the other hand, one can give non-rigorous arguments
[10] which show that the @-point in the cycle model of BP (with holes) is described by the
tri-critical zero-state Potts model universality class, for which the critical exponents are just
again those given by (2.13). So it seems that, at least for r = 0, the presencefabsence of
holes is irrelevant, i.e. does not have any effect on the exponents at the collapse transition.
In this respect, it is also interesting to remark that exact renormalization-group calculations
performed on a Sierpinski gasket [27,28] show this to be the case on a fractal lattice.

We will repeat the arguments of [10] below, as they can be extended to the collapse
transition in our more general model (2.4) for all T,

2.4. Relation with the Potts lattice gas

For general g, the Potts model (2.1) can be transformed [19] into a Potts lattice gas by
considering the state ; = 1 as the state ; = 1 of a Potts lattice gas, When t; = 0, the
Potts model can be in any of the remaining (g — 1) Potis states which we will denote by

w; =1,...,g — 1. The Hamiltonian H, now becomes
Hp=J Y tti@uy, ~D+MY 16, +4Y 5 (2.14)
(L)) .7} i

with A = —H — 4(J 4 L) (working again on the square lattice) and M = L + 2J. For
some purposes it is convenient to rewrite the lattice-gas part of (2.15) into an Ising language
(& = (s +1)/2) as

Hp =3I (1)U + )8y, — D+ KD 555 +h 5 (2.15)

(.} (.7} i

now with K = M/4, h=2+ A/2.

The model (2.14) has been studied a lot in the past, and is known to contain several fixed
points: g-state Potts (for H =0, L =0or A= —-4J, M =2J or K = J/2, h = 0), Ising
fixed point (J = 0,h = 0), a tri-critical (g — 1)-state Potts point (at unknown parameter
values), ....

Another long-known fact [29] is that for ¢ = 2, the model (2.14) describes the properties
of Ising clusters, i.e. of connected sets of nearest-neighbour sites for which the Ising variable
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tanh(J) (a) ® taok(T} (b)

< > < »
o Ko tanh(K) ' ¢ Ke tanh(X) '

Figure 3. Qualitative representation of the phase diagram of the ¢-state Potts lattice-gas mode!
in the plane & =0 for (a) ¢ = 2 and for {(b) g = 1.

is in the same state (Ising correlated percolation). Recently, using conformal invariance and
renormalization-group arguments, the precise connection between Ising clusters and the
fixed points of (2.14) for g = 2 was clarified [30]. We will use the results obtained there,
and an assumption that the renormalization-group flow will not change qualitatively when
we pass from g = 2 (Ising clusters) to g = 1 (lattice animals).

In figure 3(a) we have therefore drawn the phase diagram of the model (2.15) in the
plane 2 = 0, for ¢ = 2 as obtained in [30]. When J = 0 we recover of course the zero-
field Ising model. For J > 0 the graphs which appear in the high-temperature expansion
of (2.15) are so-called bond diluted Ising clusters. These are the clusters of a correlated
site-bond percolation problem and they are obtained as follows: first we group sets of
nearest-neighbour sites for which the Ising variable is in the same state, and then the bonds
between these sites are randomly occupied with a probability pp = 1 —exp(—J) . When
J — co, all bonds are occupied and the graphs are called clusters. Under the RG, these
clusters are attracted to a fixed point at an unknown value of J > 2K.. In [30] it was
shown that this is the tri-critical one-state Potts fixed point which is present in the phase
diagram of (2.15) for g = 2. As shown by Coniglic and Klein [31] a special role is played
by the line K = J/2 where the percolative properties of the bond diluted clusters can be
related in a unique way to the thermodynamic properties of the Ising model. The graphs
are also called droplets along this line and are nowadays often used in the Swendsen—Wang
Monte Carlo algorithm [32]. Along this droplet line at X = K, one finds for general g,
the g-state Potts fixed point of (2.15). For g = 2, this is again an Ising fixed point. In the
plane & = 0, there are thus three non-trivial fixed points which are, for ¢ = 2, situated on
the line K = K: Ising, Ising droplet and Ising cluster {or tri-critical one-state Potts) fixed
point. We will refer to this line as the critical line.

What remains of this phase diagram when g — 1? Along the line @ = 0, K = J/2,
the model (2.15) corresponds to the g = 1-state Potts model [31]. This line is in fact the
percolation line of section 2.1. From the vesicle analogy studied in [10] we finally know
that the £-point in the cycle model (situated at T = 0 or / — 00) also lies in the plane
h = 0. All this information and the expected continuity of RG flows as a function of g
leads us to the conjecture that the #-point in the cycle model is attracted to a fixed point at
some finite value of J > K, and, more interestingly, that this fixed point is the tri-critical

zero-state Potts fixed point of (2.13), with thermal exponents v = % and ¢ = % It is not
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clear to us whether the Ising fixed point is still present in the model when ¢ — 1. 1t is,
however, present for larper ¢ values, and can also be recovered for ¢ — 1 by a proper
extension of the parameter space of the model (2.1). We therefore would like to conjecture
that there is still an Ising fixed (or critical) point in the small J-region of the phase diagram.
The resulting phase diagram is drawn in figure 3(b). The critical line is no longer straight,
and there is no @ priori reason why the line should be in the plane 2 = Q (though we repeat
that the percolation fixed point, and the point at J = oo are certainly in this plane).

Having thus determined a phase diagram for the model (2.15), we can, using some simple
algebra, determine the corresponding phase diagram in the (x, y, 7)-parameter space. The
result is shown in figure 2. The critical line now becomes a line of §-fransitions coming out
of the percolation fixed point. We then expect that from 0 € t < 2, the collapse is in the
universality class of the tri-critical zero-state Potts model. Along this line, which includes
the cycle model at ¢ = 0, we are led to predict

Voo = 3 poc=%. (2.16)

When t > 2, the nature of the fransition changes. Points along this line, including the
8-point of contacts models at y = I, are attracted to the Ising critical point and we therefore
expect

Vo = 15 Poc =15 (2.17)

We thus find that indeed cycle and contact models are in different universality classes.
The exact location of the line of #-transitions is not known. A possibility is that it lies
within the plane # = 0, which in (x, ¥, ) parameters can be written as

x(y+1)?=1. (2.18)

As a final remark, we admit that the results presented in this subsection are of very
conjectural nature and that they depend on several uncontrolled assumptions. In the next
section we will use transfer-matrix calculations to study the location of the critical line and
to get independent estimates of the critical exponents along that line. They will to a large
extent confirm the conjectures (2.16) and (2.17).

3. Transfer-matrix calculations

Transfer-matrix calculations for interacting branched polymers were pioneered by Derrida
and Hermann [23] who investigated the cycle model (t = 0) for strips with width £ up to
7. We have extended their work to the more general model defined in (2.4) and (2.7).

In transfer-matrix calculations one determines the correlation function gog between two
columns a distance R apart. For R — oo this correlation function can be related to the
largest eigenvalue Ay of the transfer matrix and is given as

gor ~ A - 3.1

From (3.1) it follows that the correlation length £ is given by

§ = —(log (o)) (32)
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For Ag = 17, 8 = oo. Thus, for a given y and 1 fixed we can determine the critical
value x;(7, ¥) by the requirement

Ao(xe, ¥, T) = 1. (3.3)

This method allows us to determine the location of the critical plane.

The maximum width £ that can be studied is determined by memory requirements.
In our calculations, due to the rather ‘complicated’ form of the interactions (we have to
discriminate configurations according to the number of occupied vertices, edges and number
of contacts) the matrices grow very large rapidly (table 1), and our calculations were limited
to widths £ < 7.

Table 1, Sizes of the transfer mattix as a function of the strip width L.

L Matrix size
2 4

3 10

4 34

5 97

6 338

7 1102

-3 3937

Table 2. Values of the critical fugacity x¢, as a function of the strip width, for two points located
along the percolation line, ie. (y =1, ¥ = (1 + +/5}/2) and {y = 6, © = 3). For each size,
xc has been evaluated uvsing the condition Ag(xc, y, 7) = [, where Ap is the largest eigenvalue
of the transfer matrix (see section 3). Both sequences are nicely converging to the exact values
(2.108) 16/(1 ++/5)* and &.

y=lLt=(1+5/2 y=6 v=3

2 0.201 6578125 0.0131970798%
3 0.175290991 2 0.0125746916
4 0.166 2636876 0.0124289724
5 0.162 0896962 0.012384 1876
6 0.159839636% 0.0123682476
7 0.1585074156 0.0123620696
Exact 0.145 898 034 00123456739

To get an idea of the accuracy that can be expected, we determined x, for some points
along the exactly known percolation line (table 2). As a first example, for y = 1 the
percolation line is intersected at the values of v and x given by (2.10). In table 2 we give
our estimates of x, keeping y and t fixed at 1 and 1, respectively. These values were
determined using (3.3). There is a very nice convergence to the exact value of x,. We
give similar results for the intersection of the percolation line with the plane y = 6, which
occurs at T = 3, x. =

Besides deterrmnmg the critical plane x.(y, T) we are also interested in the location of
the tri-critical -lines and the values of exponents along those lines. To determine these
we used finite-size scaling (FSS) methods. (We did not use any methods from conformal
invariance (C1) as there are indications that this symmetry does not hold for non-interacting
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branched polymers [8]. The question of the validity of CI for interacting BP is outside the
scope of this paper.)

We focused our attention on the density pz(x, y, T) of occupied vertices. This is defined
as

1 1 ]
pr(x,y, 1) = 7 Al lim —[xmloggog] (3.4)

which from (2.7} can be wriiten as

1 i }: sx*ybrl
pclx,y,7) = 7 lim = Zgﬂx ybrl (3.5)

The set G contains all BP going through sites in column O and column R. Using (3.1}
this density can be rewritten as

1 dlogho

C alogx (3:6)

p[.:(x ¥, t)

In our calculations we fix y and then study S.(1) = pc(x:(z, y), ¥, T) as a function
of 1.

Starting from the usual scaling relations we can derive the scaling of §z(7) near the
tri-critical point 73(y). The result is

pr(z) ~ L2 F((T — p(y))L%/™) (3.7

where F is a scaling function. {(We have used this quantity because, as in the case of the

8-point of linear polymers [33], 5z seems to be less influenced by numerical effects then the

correlation length &, which is more commonly used in FSS studies with the transfer matrix).
From pr, we calculate

_ [log (Beers@)/Be@)) | 17
r.c(r)=[ log (€ + 1)/ L) +2] : (3.8)

Graphs of rz versus t for different £ should then intersect. The value of t and rg at
the intersection give finite-size estimates of 1y and vy, respectively.

In figure 4 we have presented such graphs for y = 1, while in table 3 we present our
numerical valuees for their intersections as a function of £. An extrapolation of these data
then gives the final estimates {at y = 1)

1 = 1.95+£0.1 vg,; = 0.535+0.015 3.9)

for the @ point of the contact model. These values are clearly in agreement with the
predictions in section 2. Our value of t; satisfies the bound (2.11) while our value for
Vg, is in full agreement with the Ising-value v = %

To get also an estimate of ¢ ; we caiculated the quantity

_ 1 dé
1e(r) = Be(2) dr 3.10)
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Figure 4. Plot of the values r¢ (3.8) versus 7 for y = [, For large £ the curves should intersect
at (Tg.z, va,r). The intersections points are reported in table 3,

Table 3. Estimates of the critical exponents (va,; and ¢, for differant strip widths at y = 1.
The values are obtained looking at the crossing points of the lines in figure 4, The asymptotic
results {(equations (3.9} and (3.12)) have been obtained lonking at these intersection points in

the range y < 2.

L vg e

3 051114  0.842
4 051830 0.676
5 052494 0,609
6 052973 056

which scales as
1o~ L) (3.11)

at T = 1p(y). Numerical estimates of the crossover exponent obtained in this way are less
accurate because they involve a second derivative (calculaied numerically) of the eigenvalue
Ap. Values for ¢b, at v = 1, are also given in table 3 and they lead to the final result

oo, 1 =0.55£0.015. (3.12)

This value is again consistent with the prediction ¢y ; = %

We have also performed similar calculations at y = 0.2,0.4, 0.6, 0.8, 1.5; the estimates
for vg,; and ¢y ; we obtained are within the numerical errors, equal to those given by (3.9)
and (3.12).

As a first conclusion then, our numerical results are in full agreement with the conjecture
that for ¥ < 2 the theta point of branched polymers is described by Ising exponents.

We have made completely similar calculations for y > 2, where we have determined
T.(y) for a few y values. In figure 5 we present graphs of r. versus T for y = 6. As can be
seen in table 4 the estimates for vg . go through a maximum, and no reliable extrapolation
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Figure 5. Plot of the values #r (3.8) versus t for y = 6. For large £ the curves should intersect
at (Tgc. Vp,c)- The intersections points are reported in table 4,

Table 4. Estimates of the critical exponents (vg, and ¢y c) for different strip widths at y = 6.
The values are obtained looking at the crossing points of the lines in figure 4. The asymptotic
results (equation (3.13)) have been obtained looking at these intersection points in the range

y>2

L vg 7]

3 051225 0.592
4 051326 0.624
5 051333 0.661
& 051329 0.662

can be obtained. For y ~ 6.2, finite-size estimates of vy are nearly independent of £
indicating that here we are close to the tri-critical fixed point. At this point our resuits for
the thermal exponents are

Vg =0.51+£0.01 g =065£01. (3.13)

These values are, within their accuracy, equal to those obtained by Derrida and Hermann
[23] for the cycle model (z = ().

The values (3.13) are also clearly different from the values for y < 2 as given in (3.10)
and (3.12). This is the most evident for ¢. On the basis of this, we conclude that indeed
there are two different universality classes for 8-collapses of BP, one including the contact
model, the other including the cycle model.

Secondly, we remark that our value for ¢y, is in agreement with the prediction in
(2.17). The same cannot be said about vy ¢, but we have to take into account that the error
bar on vy, is much smaller. We can argue that, due to the maximum in our finite-size
estimates for this exponent, we have to go to considerably larger £-values to find the true
asymptotic behaviour. We can also remark that, in a similar study [33] of the 8-point of
linear polymers, the exponent vy = 0.55:+0.01 was obtained, seemingly excluding the now
generally accepted exact value vg = 2 [5].
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We think it is fair to say that the present calculations do not allow us to confirm nor
to disprove the prediction (2.16) for vy .. The question of whether the #-point of BP (with
holes) in the regime y > 2 (or T < 2} is in the universality class of the tri-critical zero-state
Potts model thus remains open.

Finally we have investigated whether the lines of #-points lie in the plane given by
(2.18). We find that, within the numerical accuracy, this is true for y > 2, but not for the
line of Ising transitions.

4. The collapsed phase

We finally turn to a stady of the collapsed phase and the possibility of a collapse—collapse
transition. A proper discussion of the collapsed phase requires the introduction of the
concept of solvent contact [12]. A solvent contact is a perimeter edge that is not a contact,
so that the number of such solvent contacts m in a given animal is

m=t-1. 4.1

In section 2, we showed that for y = 1, T -> 0o, the critical properties of BP become
those of spanning trees, for which by definition m = ¢ =0, and as a consequence for large
s, I = b =s. Furthermore, we can expect on the basis of RG ideas that the latter is true for
all T > 1p; when we look at large enough length scales. We are therefore led to predict
that

(I}, ~s for y=1, 1>1;. 42)

On the other hand, for the collapsed phase in the cycle model, some exact results were
recently determined by Flesia et al [26]. They showed that

{my, ~s for T=0, y>ysec- (4.3)

The cycle model includes only animals without contacts (7 = 0) so that trivially we
have {I}, = 0.

One can now ask whether there exists a transition between these two physically distinct
collapsed phases or whether quantities kike, for example, {m), change analytically when we
pass from the cycle to the contact model. Numerical evidence for such a collapse—collapse
transition was provided in [12].

Using the Potts description of the interacting lattice animals we can get information
on the asymptotic form (for y — 00, v — 00, but keeping w = t/y fixed) of a possible
collapse—collapse transition line.

Using (2.3} and (4.1} we can rewrite (2.4) as

Z=3 "y o). 4.4)
[G1]

When y — oo, equation (4.4) will contain only graphs which have m = 0, i.e. which span
the lattice (and consequently s = N). For that case, from (2.3), [ = 25 — b, and we finally
have

Z~Y w? (4.5)
@
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Figure 6. Average number of contacts {f} versus r for y = 9 at criticality (4.5) in a finite strip
for £=3,4,5.

where the sum is over graphs which span the lattice. It is well known [19] that (4.5) is the
high-temperature expansion for the g-state Potts model when ¢ — 0 with

w=1/exp(J) - 1}. (4.6)

Thus, in the large-y, large-t region our lattice animals are described by the zero-state Potts
model. This model is known [19] to have only a transition at J; = 0, or for w — .
In fact, at this point the graphs contributing to (4.5) become the spanning trees which we
already encountered in section 2.2.

In conclusion then, for y — co and v ~ o0, the only transition in the model can
be for w — o0, or, stated otherwise, any possible collapse—collapse transition line should
asymptotically become parallel to the r-axis.

We have looked for evidence of this transition again using the transfer matrix.
Unfortunately, the technique of locating the transition using a plot of r(r) versus 7 cannot
be applied in this case, because everywhere in the collapsed phase we have v = % so a
crossing of curves for different £ values is not to be expected, and indeed turns out not to
occur.

An alternative method is to ook at averages and fluctuations in the number of contacts.
We have therefore looked at the average number of contacts {f} which is defined as

T <I}.\ _n Zb,[ C.s',b.!]ybrl
= ,l_lfl;l.o s vl-l-Halc s Zb,f Cs.b,[}’bff : 4.7)
Using the definitions (1.1) and (1.2), we can write {/) as
dlog Z, dlogx.(t, ¥y
iy = 2logZs | dlogx(r.y) (4.8)

T dlogz dlogt

In figure 6 we show numerical results for {f} as a function of t at y = 9 for different
values of £. These results give evidence that the collapse—coilapse transition (if it exists)
is continuous and not first order,
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To localize the transition one can Jook at the fluctuations A7 in the number of contacts:

W=
Al = lim . = ~30og)? log xc(7, y) . (4.9)

We have made extensive explorations in the phase diagram looking for a peak in AJ
growing with L, but we did not find any evidence for such behaviour. We believe this to
be strong numerical evidence against the existence of the collapse—collapse transition.

5. Remarks and conclusions

In this paper we have given numerical and analytical results for the critical behaviour of a
model for interacting BP. We have determined the critical surface and the location of lines
and points of higher-order transitions (figure 2) .

For small y and t values the behaviour of large lattice animals (s — oo) is essentially
that of non-interacting animals; we thus expect, e.g., that v = 0.64 ... [9] for animals in
this regime.

When one increases y or 7, the animal collapses. For y < 2, the collapse is in the Ising
universality class with the exponents given by (2.16). The animal collapses into a tree-like
structure.

When 2 < y < 6.48..., the collapse is in a different universality class with exponents
which are possibly those of the tri-critical zero-state Potts model, and are given in (2.18).
Further work remains to be done to confirm the predicted exponent values along that line.
The animal collapses into a compact configuration with no contacts, but (see (4.3)) a number
of solvent contacts proportional to 5. The two collapse lines are separated by a higher-order
critical point which is of percolatlon type. At this pomt we expect, using the well known
percolation exponent, that v = 77 B and =32 % = 91

Finally, we have given numerical cv1dence for the presence of only one collapsed phase.

The results presented here can be extended in several directions. In section 1, we
discussed the exponential growth of the quantity Z; for large s. Magnetic-like exponents
occur in the corrections to this leading behaviour. More precisely, we expect Z; to behave as

Z.(y, 7) ~ x(T, U578 (5.1)

For non-interacting BP, @ is known to be exactly 1, while on the basis of the vesicle
analogy ® = 2 was predicted along the cycle-model collapse branch [10]. So far we have
no result for ® along the Ising line. It is furthermore known that, for example, along the
percolation line for p > pc, or in general in a collapsed phase, that (5.3) does not always
give the correct form of Z; [34].

We also did not discuss any surface exponents. In fact these are not even known
completely for the non-interacting branched polymers [35,36]. Still, we can make some
predictions for these exponents along the two lines of §-collapses.

An especially interesting exponent is the surface crossover exponent, which is associated
with the adsorption of the BP onto the surface when the attraction with the boundary reaches
a critical value (the ‘special’ surface transition [37]).

Along the cycle-model collapse line, again using the vesicle analogy, the adsorption of
the tri-critical BP can be related to the adsorption of a self-avoiding walk, a problem for
which exact results exist, This leads us to predict that in this case the surface crossover
exponent, which we denote as ¢, equals 1.
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Adsorption onto a surface (which is one-dimensional in 4 = 2) is not possible in general,
because it would imply the existence of a phase transition in 4 = 1. Only for models like
O(n)-models with n < 1 is such a transition is possible. Therefore, we are led to predict
that along the ‘Ising’-line of @-transition there is no adsorption possible. If we denocte by
w, the ‘critical value’ of some fugacity for monomer-surface interactions then we expect
@, to diverge when t goes to tp; from below (if we consider, e.g., the case y = 1).

We are currently investigating these adsorption processes, because a confirmation of
the above predictions could give considerable further evidence for the correctness of the
universality classes which we proposed here.

The model we have studied can be related to the “solvent’ model of Flesia ef af [12].
The authors of that reference study a model in the cancnical ensemble (i.e. for fixed s) with
a free energy Zg; which is defined as

Zps =y u"w' 52)

where the sum runs over the set of all distinct BP with s (fixed!) occupied edges, m
solvent contacts and J contacts. Comparing with (4.4) we immediately see that this is
just our model in the canonical ensemble with # = y~!/2. Using these relations our
phase diagram can be compared with that of [12]. In that work, the location of the tri-
critical lines is determined, together with the associated crossover exponents, using the
exact enumeration data of [22]. While both phase diagrams agree to some extent, in the
present work we have added substantial quantitative information. The relation with the Poits
model as discussed in section 2 also allowed us to give conjectures on the exact values of
the critical exponents along the tri-critical lines. Furthermore, we find no evidence of a
collapse—collapse transition. We suspect that the transition found in [12] is an effect of the
use of finite animals in a region where spanning graphs dominate.

Finally, we can think of extending our model to 4 = 3. Several of the arguments in
section 2 seem to also go through in that case. The role of the percolation line and plane
should be similar, and we can also expect an Ising-like branch. Whether the other branch
of collapse transitions is still tri-critical zero-state Potts is not so clear (in any case the
exponents of that model in 4 = 3 are not known) but the vesicle analogy has been extended
to this dimension, so that numerical estimates for the exponents along the branch now exist
[38]. Of course a numerical investigation of our model in d = 3 would be much more
difficult, but could be envisaged using techniques that were recently established ior the
simulation of d = 3-vesicles [38].
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