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Non-universality in the collapse of two-dimensional branched 
polymers 
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t Depanment W&de Natuurkunde Informatics, Limburgs Universitair Cenhum 
3590 Diepenbe&, Belgium 

Received 12 November 1993. in final form 3 June 1994 

Abshact lo this paper we study the complete phase diagram of a model of interacting branched 
polyms.  The mcdel we consider is a lattice animal one, where the collapse transition can be 
ddven both by a contact fugacity benveea two occupied nearest neighbours and by a fugacity 
related to each occupied edge. Using a pnfs model Ionnulation of the problem we conjecture the 
existence oftwo different universality classes forthe B transitions (with thermal exponents, U and 
+,equalto(f. $)and(+, ~)),separatedbyahigher-orderpercolationpoinL Wealsopresent 
mnvinang numerical evidence for these exponent values using a bansfff-matr* approach. We 
discuss the possibility of a collapse-collapse transition and we predict the behaviour of OUT 
model when an adsorbing surface is included. 

1. Introduction 

Linear polymers consist of monomers with a functionality of two. The study of such 
polymers has witnessed great progress following the work of de Gennes [1,2]. This is 
especially hue in two dimensions, where many critical properties were determined using 
Coulomb gas [3] or conformal invariance [4] methods. An area in which much progress was 
made recently is that of the collapse of a linear polymer when the quality that the solution 
decreases and the polymer passes through the so-called @-transition (or @-point) [5,6]. 

In contrast, much less is known about branched polymers (BP) which are made of 
monomers of higher functionality. In lattice statistical mechanics, these BP are described 
by lattice animals. Lattice animals in d dimensions can be related to the Yang-Lee edge 
singularity in d - 2 dimensions [7]. Unfortunately, this technique does not allow a complete 
determination of critical exponents in d = 2. There also exists evidence that lattice animals 
may not be conformally invariant [SI. Still, quite accurate estimates of critical exponents 
for d = 2 lattice animals can be found in the literature [91. 

In the present paper we will study the collapse transitions that branched polymers in 
two dimensions may undergo in dilute solution in a poor solvent when the temperature is 
lowered. To be more specific. consider a lattice animal consisting of s occupied vertices 
and 6 occupied edges, on, for example, a square lattice. We call a contact a pair of nearest- 
neighbour occupied vertices which are not connected through an occupied edge (figure 1). 
We denote the number of such contacts by I. The mcdel for the collapse of branched 
polymers which we will study in this paper is defined by giving a weight i y % '  to such 
an animal, Here x ,  y and 5 are fugacities for vertices, edges and contacts, respectively. 

0305-4470/94/175813+18$19.50 @ 1994 IOP Publishing Ltd 5813 
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i :  

Figure 1. An example of a lattice animal in a square lauice made of s = 25 sites, b = 31 
bonds, I = 6 contans, I = 32 perimeter edges. m = 26 solvent connCis and e = 7 cycles. 

We are interested in the following quantities. First we define a partition function Z, as 

Z, = CCs,b , lybr l  (1.1) 
b.1 

where Cs,b,, is the number of distinct lattice animals (modulo translation) with s occupied 
vertices, b occupied edges and I contacts, We expect that for large s and fixed y and r,  Z, 
grows exponentially so that the dimensionless free energy per monomer is given by 

f = - 1 '  Im -logZ, = -1ogp 
r+m s 

where /I is a non-universal quantity which depends on the details of the lattice. As a 
consequence, the grand-canonical partition function Z 

z = X'Z, (1.3) 

will have a critical point at x = xc = 1/11 and then we can rewrite (1.2) as 

f = 1% X d Y  9 5 )  (1.4) 

where we have now explicitly denoted the dependence of xc  on y and 5.  Another quantity 
of interest is a linear measure (R),7 (e.g. we can take the radius of gyration) of an animal 
of s occupied vertices (by (,).? we denote the average over all animals with s vertices). As 
usual. the asymptotic behaviour of this quantity defines the exponent v as 

( R ) s  - s" S ' O O .  (1.5) 

For r = 0, contacts are forbidden (strong embeddings) and the lattice animals are 
referred to as site animals. For this case our model coincides with the so-called cycle 
model for BP collapse (this name stems from the fact that the number of cycles, c, in the 
animal is given by c = b - s + 1, so that the weight of an animal in this case can also be 
rewritten as i y c ,  with z = xy). Recently, it was argued by one of us (CV) that the collapse 
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(or e-) transition in the cycle model of BP is in the universality class of the tri-critical zero- 
state Pot& model [lo]. For y (respectively x )  = 1. we recover the so-called contact models 
for the @-transition of edge animals (weak embeddmgs) counted by vertices (resp. edges). 
It can be argued that these models are more physical as collapse models, and indeed they 
are natural extension of such models for linear polymers (where one always has s = b+ 1). 

It has been argued that the &points of contact and cycle models may be in different 
universality classes [ l l ] .  

In the present paper we will study the phase diagram of the branched polymers for 
general 5 using both analytic reasonings and transfer-mairix calculations. Indeed, we will 
find strong evidence for the existence of two distinct universality classes separated by a 
higher-order multicritical point which is described by percolation exponents. We will also 
discuss the nature of the collapsed phase. 

It is interesting to remark that for afier a simple transformation our model reduces to a 
model recently introduced by Flesia et a1 [ 121 and. studied by those authors in the canonical 
ensemble (our model, in fact, is studied in a grand-canonical ensemble). The phase diagram 
which we obtain will look at first sight similar to the one proposed by these authors, but is 
in fact different in several quantitative aspects. 

This paper is organized as follows. In section 2 we show how our branched polymers 
can be obtained as graphs in the high-temperature expansion of an appropriate Potts model. 
This relation was already derived by Coniglio some years ago [13]. We will supplement 
his work with some new insights which can be obtained from more recent studies of Potts 
models. In section 3 we will present the result of transfer-matrix calculations which will give 
evidence for the existence of two distinct universality classes for the collapse of branched 
polymers which in section 2 were conjectured to be the tri-critical zero-state Potts model and 
the king model universality classes. In section 4 we discuss the collapsed phase. Finally, 
in section 5, we present some concluding remarks, including the expected behaviour of the 
interacting branched polymers near a surface. 

2. The Pot& model and branched polymers 

The description of branched polymers using the Potts model has been introduced by several 
authors in the past [14-171. We now briefly recall their main results. 

In the q-state Potts model [18,19], one has at each site i of a lattice a ‘spin’ variable 
which can be in any of q different states or ‘colours’: ui = 1, . . . , q ,  To describe branched 
polymers, we introduce the following reduced Hamiltoninan ‘Hp: 

Using standard high-temperature expansion techniques [ 191, a ‘partition function’ Z for 
lattice animals can be obtained in the limit q --t 1. One then finds in the thermodynamic 

where the set GI contains all (unrooted) lattice animals with b occupied edges, s occupied 
vertices and t perimeter edges (a perimeter edge is an empty edge between an occupied 
vertex and a nearst-neighbour vertex, which can be occupied or empty): see figure 1. In 
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equation (2.2), p = 1 -exp (-J - L) and U = (exp J - I)/(exp(J + L) - 1). When U = 1 
(or L = 0), f is equal to the usual generating function of bond percolation. It is well 
known that, on the square lattice, bond percolation is critical for p = pc = 1 and H = 0 
[20]. The plane L = 0, and in particular the line L = H = 0, will play a major role in our 
further discussions and will be referred to as the percolation plane and the percolation line, 
respectively. 

F Seno and C Vanderzande 

For any animal we have the relation 

4s = 2b + t + I (2.3) 

(square lattice!!) which allows us to rewrite (2.2) as 

z = C x r y b r ’  
lEll 

(2.4) 

with 

x = exp (-H - 4(5 + L)) (2 .5~)  

y = [ exp ( J )  - 11 exp ( J  + L )  (2.5b) 

and 

r = exp (J + L) . ( 2 5 )  

Thus Z indeed coincides with the ‘partition function’ for the interacting animal problem 
introduced in the previous section, while the equations (2.5) express the fugacities of our 
BP model in terms of the Pons-Hamiltonian parameters. 

Next we turn briefly to the two-point correlation function which will also occur in the 
transfermatrix calculations (section 3). The two-point correlation function rk, for the Potts 
model (2.1) is defined as 

Again using high-temperature expansion techniques, it can be shown that 

where the set Gz contains all lattice animals that pass through both the sites k and 1. 
It is our aim in this paper to study the phase diagram of the interacting BP as can he 

derived from (2.4) and (2.7). In sections 2.1 and 2.2 we first give some results which can 
be obtained from the relations derived so far and which can be considered to be exact. 
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2.1. The role of the percolation plane 

The percolation plane i s  given in terms of the fugacities x ,  y and r by 

@.Sa) 2 y = r  - - 5 .  

The percolation line is given by the additional equation 

x = r - 4 .  (2.8b) 

Along this line the percolation threshold p = pc = 4, H = 0 is located at r = 2, 
and thus y = 2, x = &. Within the percolation plane this point is fully repulsive in a 
renormalization-group sense. The relevant scaling dimensions are well known by now 131 
and are yt = :, y~ = E .  

More important however is the fact that, in the space of parameters of the Hamiltonian 
(’U), the percolation fixed point isfully repulsive [21]. The third relevant scaling dimension 
can be related to a magnetic exponent of the Potts model which is given by $, The role 
played by this fully repulsive percolation fixed point will be further discussed below (section 
2.4). 

There is another limit for which the model (2.1) is solvable. Indeed, in the limit 
H -+ -CO, the probability that the Potts spin has ‘colour’ 1 becomes 0, and thus the model 
reduces to a (q - 1)-state Potts model . For the case of interest here (q -+ I), we thus find 
that for 

H + - m  or x r 4  -+ 00 (2.9) 

the branched polymers are described by a zero-state Potts model. It is known that this 
model describes spanning trees [19]. For values of the parameters x ,  y .  r which satisfy 
(2.9) our branched polymers will thus behave like trees which span the whole lattice. We 
will investigate below when this is the case. 

2.2. Results for  the contact model of edge lattice animls 

The information we have obtained so far can be applied to the contact model of edge 
animals (counted by vertices, i.e. y = 1). For small r we expect that the critical exponents 
of the animal are equal to those that were determined for non-interacting animals [5].  If we 
increase r the animals will collapse at a critical value of 7 which we denote as r ~ , l .  Using 
the results of section 2.1 we can obtain a lower bound for r0.1 and some information on 
the behaviour of the fully collapsed animals (5 -+ cc). First, the plane y = 1 intersect the 
percolation line for 

1 + f i  -4 I + &  
r = - 5 p = 2  x = x p  = ( T )  (2.10) 

At this point, the percolation probability p equals (- 1 + f i ) / (1+ a), less than the value 
at the percolation threshold pc  = i. 

Subcritical percolation clusters behave like branched polymers, and from this we obtain 
a (non-rigorous) lower bound on the value QJ, i.e. 

(2. I I )  
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Figure 2. The m w s  indicate 
renormalization-group ROWS. We have indicated three critical points (1 )  percolation point, 
(2) lricritical zero-state Potts point. and (3) king critical point. The full curve is the location 
of supercritical percolation. while the dotted e w e  indicates subcritical percolation. The broken 
c w e  is the line of theta hansitions. The line at y = 1 is the the line along which our model 
coincides wilh the contact model of site animals. In the plane r = 0 our model coincides with 
the cycle model. 

Projection of the phase diagnm in lhe h , r )  plane. 

This inequality will indeed be satisfied by OUT transfer-matrix results. 
Secondly, it can be shown that the condition (2.9) is satisfied for our model at 

y = 1, s -+ W. We thus arrive at the important conclusion that in the contact model, 
edge animals collapse into spanning tree configurations. The proof is a simple consequence 
of results obtained in [22]. In that reference it was shown that for y = 1 and for s -+ 00 

f lim - = - 1 .  
r-bm log T 

(2.12) 

Then, using (1.2) it follows that for the contact model of edge animals, x,(y = 1, t) * 
T-' when s -+ W. In that limit, condition (2.9) is therefore fulfilled and we conclude that 
the critical, collapsed edge animals in the contact model become like spanning trees for 
s -+ W. On the basis of renormalization-group (RC) ideas we may expect this to be true 
everywhere in the collapsed phase when the animal is investigated at large enough scales. 

In figure 2, which contains the phase diagram of the lattice animals as will be derived 
in this paper, we show the knowledge we have obtained so far on the phase diagram of 
the interacting lanice animals. We feel that at least this part can be considered as exact 
(through non-rigorous) information. As we have discussed above, the percolation point is 
fully repulsive in the ( x ,  y,  s)-parameter space, and thus two critical lines must come out of 
the percolation plane at the percolation threshold. We don't know the exact location of these 
lines, neither have we, so far, any exact information on the nature of the transition along 
these lines. Yet, as discussed below, we can obtain some conjectural information on these 
lines, which will then be verified in the next section, using transfer-matrix calculations. 
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2.3. The cycle model 

AS noted in the introduction, for r = 0 we recover the cycle model of lattice animal 
collapse. The collapse of branched polymers in this model was studied using the transfer- 
matrix technique [231. The transition was located at x = = 0.0230 & 0.004, 
y = = 6.48 f 0.12. The exponents at this 0-point were determined numetically to 
be 

In a recent letter [lo] some new results were obtained for this model. First, it was 
shown, using a mapping onto the vesicle model of Fisher et a1 [24,25] that for y > ye,., 
the equation of the critical line is x = y-'. Secondly, for the special case of branched 
polymers without holes (which are also called discs [26]) the exact exponents at the &point 
were determined as 

= 0.5095 iz 0.003, @.os.c = 0.657 & 0.025. 

(2.13) 

It is not completely clear whether this result still holds for animals with holes. In fact, 
it has been shown recently [26] that the nature of the collapsed phase differs depending on 
whether one includes holes or not. On the other hand, one can give non-rigorous arguments 
[ 101 which show that the @-point in the cycle model of BP (with holes) is described by the 
tri-critical zero-state Potts model universality class, for which the critical exponents are just 
again those given by (2.13). So it seems that, at least for r = 0, the presence/absence of 
hol'es is irrelevant, i.e. does not have any effect on the exponents at the collapse transition. 
In this respect, it is also interesting to remark that exact renormalization-group calculations 
performed on a Sierpinski gasket [27,28] show this to be the case on a fractal lattice. 

We will repeat the arguments of [lo] below, as they can be extended to the collapse 
transition in our more general model (2.4) for all r. 

2.4. Relation with the Potts lattice gas 

For general q. the Potts model (2.1) can be transformed [I91 into a Potts lattice gas by 
considering the state ai = 1 as the state ti = 1 of a Potts lattice gas. When ti = 0, the 
Potts model can be in any of the remaining (q - 1) Potts states which we will denote by 
pi = 1, , . . , q - 1. The Hamiltonian 'H, now becomes 

I 2 ve,c = 7 @8,C = J . 

(2.14) 

with A = -H - 4(J  + L )  (working again on the square lattice) and M = L + 2J. For 
some purposes it is convenient to rewrite the lattice-gas part of (2.15) into an Ising language 
(ti = (si + 1)/2) as 

now with K = M / 4 ,  h = M + A/2. 
The model (2.14) has been studied a lot in the past, and is known to contain several fixed 

points: q-state Potts (for H = 0, L = 0 or A = -4.7, M = 25 or K = J / 2 ,  h = 0), king 
fixed point ( J  = 0, h = O), a tri-critical (q - 1)-state Potts point (at unknown parameter 
values), . . . . 

Another long-known fact [29] is that for q = 2, the model (2.14) describes the properties 
of king clusters, i.e. of connected sets of nearest-neighbour sites for which the king variable 
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Figwe 3. Qualitative ~ p ~ ~ e n t a t i a n  of the phase diagram of the qState Potts lanice-gas model 
in the plane h = 0 for (a)  q = 2 and for (b)  q = I .  

is in the same state (Ising correlated percolation). Recently, using conformal invariance and 
renormalization-group arguments, the precise connection between Ising clusters and the 
fixed points of (2.14) for q = 2 was cIarified [30]. We will use the results obtained there, 
and an assumption that the renormalization-group flow will not change qualitatively when 
we pass from q = 2 (Ising clusters) to q = 1 (lattice animals). 

In figure 3(u) we have therefore drawn the phase diagram of the model (2.15) in the 
plane h = 0, for q = 2 as obtained in [30]. When J = 0 we recover of course the zero- 
field king model. For J > 0 the graphs which appear in the high-temperature expansion 
of (2.15) are so-called bond diluted king clusters. These are the clusters of a correlated 
sitebond percolation problem and they are obtained as follows: first we group sets of 
nearest-neighbour sites for which the king variable is in the same state, and then the bonds 
between these sites are randomly occupied with a probability pe  = 1 - exp ( - J )  . When 
J -+ 00, all bonds are occupied and the graphs are called clusters. Under the RG, these 
clusters are attracted to a fixed point at an unknown value of J 2K,. In 1301 it was 
shown that this is the hi-critical one-state Potts fixed point which is present in the phase 
diagram of (2.15) for q = 2 As shown by Coniglio and Klein [31] a special role is played 
by the line K = J / 2  where the percolative properties of the bond diluted clusters can be 
related in a unique way to the thermodynamic properties of the king model. The graphs 
are also called droplets along this line and are nowadays often used in the Swendsen-Wang 
Monte Carlo algorithm [32]. Along this droplet line at K = Kc one finds for general q,  
the q-state Potts fixed point of (2.15). For q = 2, this is again an king fixed point. In the 
plane h = 0, there are thus three non-trivial fixed points which are, for q = 2, situated on 
the line K = K,: Ising, Ising droplet and king cluster (or tri-critical one-state Potts) fixed 
point. We will refer to this line as the critical line. 

what remains of this phase diagram when q -+ l ?  Along the line h = 0, K = 512, 
the model (2.15) corresponds to the q = 1-state Potts model [31]. This line is in fact the 
percolation line of section 2.1. From the vesicle analogy studied in [IO] we finally know 
that the @-point in the cycle model (situated at 5 = 0 or J -+ 03) also lies in the plane 
h = 0. All this information and the expected continuity of RG flows as a function of q 
leads us to the conjecture that the 8-point in the cycle model is attracted to a fixed point at 
some finite value of J > K,, and, more interestingly, that this fixed p in t  is the hi-critical 
zero-state Potts fixed point of (2.15), with thermal exponents w = $ and 4 = f. It is not 
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clear to us whether the king fixed point is still present in the model when q + 1. It is, 
however, present for larger q values, and can also be recovered for q + 1 by a proper 
extension of the parameter space of the model (2.1). We therefore would like to conjecture 
that there is still an king fixed (or critical) point in the small J-region of the phase diagram. 
The resulting phase diagram is drawn in figure 3(b). The critical line is no longer straight, 
and there is no apriori reason why the line should be in the plane h = 0 (though we repeat 
that the percolation fixed point, and the point at J = CO are certainly in this plane). 

Having thus determined a phase diagram for the model (2.15), we can, using some simple 
algebra, determine the corresponding phase diagram in the (x, y. 5)-parameter space. The 
result is shown in figure 2. The critical line now becomes a line of 6-transitions coming out 
of the percolation fixed point. We then expect that from 0 4 r < 2, the collapse is in the 
universality class of the tri-critical zero-state Pons model. Along this line, which includes 
the cycle model at t = 0, we are led to predict 

When t z 2, the nature of the transition changes. Points along this line, including the 
&point of contacts models at y = 1, are attracted to the king critical point and we therefore 
expect 

(2.17) 

We thus find that indeed cycle and contact models are in different universality classes. 
The exact location of the line of 6-transitions is not known. A possibility is that it lies 
within the plane h = 0, which in ( x .  y .  r )  parameters can be Written as 

8 ue,l = 1 Is @e,e = yj. 

x ( y  + r)* = 1 .  (2.18) 

As a final remark, we admit that the results presented in this subsection are of very 
conjectural nature and that they depend on several uncontrolled assumptions. In the next 
section we will use transfer-matrix calculations to study the location of the critical line and 
$9 get independent estimates of the critical exponents along that line. They will to a large 
extent confirm the conjectures (2.16) and (2.17). 

3. h f e r - m a t r i x  calculations 

Transfer-matrix calculations for interacting branched polymers were pioneered by Derrida 
and H e r m m  I231 who investigated the cycle model (5  = 0) for strips with width L up to 
7. We have extended their work to the more general model defined in (2.4) and (2.7). 

In transfer-rnatrix calculations one determines the correlation function goR between two 
columns a distance R apart. For R + CO this correlation function can be related to the 
largest eigenvalue of the transfer matrix and is given as 

From (3.1) it follows that the correlation length g is given by 
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For & -+ 1-, e + 00. Thus, for a given y and r fixed we can determine the critical 
value xC(r, y )  by the requirement 

ho(xc, y .  T) = 1 . (3.3) 

This method allows us to determine the location of the critical plane. 
The maximum width L that can be studied is determined by memory requirements. 

In our calculations, due to the rather ‘complicated’ form of the interactions (we have to 
discriminate configurations according to the number of occupied vertices, edges and number 
of contacts) the mahices grow very large rapidly (table l), and our calculations were limited 
to widths L < 7. 

Table 1. Sizes of the transfer matrix as a function of the strip width I. 

L h4auixsize 

2 4  
3 IO 
4 34 
5 97 
6 338 
7 1102 
8 3937 

Table 2. Values of the critical fugacity xc, ns a function of the suip width, for two points located 
along the percolation tine, i.e. 0 = I ,  I = (1 + &)/2) and (y = 6. r = 3). For each size, 
xc has been evaluated using the condition Ao(x,,y. I) = I. where 10 is lhe largest eigenvalue 
of the transfer m v i x  (see d o n  3). Both sequences are nicely converging to the exmt values 
(2.10b) 16/(1 + ~5~ and &. 
c y = l ,  r = ( 1 + 8 ) / 2  y=6, r = 3  
2 0.201 6578125 0.013 1970798 
3 0.175 290991 2 0.012574691 6 
4 0,166263687 6 0.012 4289724 
5 0.162 089696 2 0.012384 1876 
6 0. I59 8396369 0.0123682476 
7 0.1585074156 0.012362069 6 
Exact 0.145 898034 0.012 345 678 9 

To get an idea of the accuracy that can be expected, we determined xc for some points 
along the exactly known percolation line (table 2). As a first example, for y = 1 the 
percolation line is intersected at the values of T and x given by (2.10). In table 2 we give 
our estimates of x, keeping y and r fixed at 1 and rp, respectively. These values were 
determined using (3.3). There is a very nice convergence to the exact value of x,. We 
give similar results for the intersection of the percolation line with the plane y = 6,  which 
occurs at T = 3, xc,= 6. 

Besides deternuning the critical plane xc(y,  T) we are also interested in the location of 
the hi-critical &lines and the values of exponents along those lines. To determine these 
we used finite-size scaling (FSS) methods. (We did not use any methods from conformal 
invariance (CI) as there are indications that this symmetry does not hold for non-interacting 
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branched polymers [SI. The question of the validity of CI for interacting BP is outside the 
scope of this paper.) 

We focused our attention on the density pc(x, y ,  T )  of occupied vertices. This is defined 
as 

which from (2.7) can be witten as 

(3.4) 

The set FR contains all BP going through sites in column 0 and column R .  Using (3.1) 
this density can be rewritten as 

In our calculations we fix y and then study &(r) = pc(xC(r, y), y ,  r )  as a function 

Starting from the usual scaling relations we can derive the scaling of bc(r) near the 
Of T .  

tri-critical point TS(Y) .  The result is 

bL(r )  - L ” ~ - ’ F  (( r - ~E(Y))L’~’“) (3.7) 

where F is a scaling function. (We have used this quantity because, as in the case of the 
@-point of linaar polymers 1331, seems to be less influenced by numerical effects then the 
correlation length <, which is more commonly used in FSS studies with the transfer mairix). 

From 6 ~ .  we calculate 

Graphs of re versus r for different L: should then intersect. The value of r and rc at 
the intersection give finite-size estimates of ro and U S ,  respectively. 

In figure 4 we have presented such graphs for y = 1, while in table 3 we present our 
numerical values for their intersections as a function of C. An extrapolation of these data 
then gives the final estimates (at y = I )  

To,[ = 1.95 f 0.1 Ue.1 = 0.535 * 0.015 (3.9) 

for the 6 point of the contact model. These values are clearly in agreement with the 
predictions in section 2. Our value of TO,, satisfies the bound (2.11) while our value for 
u8.l is in full agreement with the king-value U = &. 

To get also an estimate of 4e.1 we calculated the quantity 

(3.10) 
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I 
21 2.2 2,s 2.4 0.51 ’ 

r 

F i p  4. Plot of the values rc (3.8) versus 7 for y = I. For large C the curves should intersect 
at (z0.1, va,i). The intersections points are reported in table 3. 

Table 3. Estimales of Ihe critical exponents (va.1 and 6u.l) for different strip widths at y = I .  
The values are obtained looking I the crossing points of the lines in figure 4. The asymptotic 
results (equations (3.9) and (3.12)) have been oblained looking at these intersection points in 
the range y c 2. 

C va 6U 
3 0.511 14 0.842 
4 0.51830 0.676 
5 0.52494 0.609 
6 0.52973 0.56 

which scales as 

at r = re(y) .  Numerical estimates of the crossover exponent obtained in this way are less 
accurate because they involve a second derivative (calculated numerically) of the eigenvalue 
i o .  Values for 40, at y = 1, are also given in table 3 and they lead to the final result 

$0.1 = 0.55 *0.015. (3.12) 

This value is again consistent with the. prediction @8.f = fi. 
We have also performed similar calculations at y = 0.2,0.4,0.6,0.8, 1.5; the estimates 

for US,, and @e,/ we obtained are within the numerical errors, equal to those given by (3.9) 
and (3.12). 

As a first conclusion then, our numerical results are in full agreement with the conjecture 
that for y < 2 the theta point of branched polymers is described by king exponents. 

We have made completely similar calculations for y z 2, where we have determined 
r&) for a few y values. In figure 5 we present graphs of rc versus r for y = 6. As can be 
seen in table 4 the estimates for u ~ . ~  go through a maximum, and no reliable extrapolation 
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L 
0.29 03 0.31 0.32 

7 

Figure 5. Plot of the values rc (3.8) versus r for y = 6. For large C the cuwes should intersect 
at (re,=, ue,J. The intersections points are reported in table 4. 

Table 4. %timates of the critical exponents and +os.c) for different ship widths at y = 6. 
The values are obtained lookng at the crossing points of the lines in figure 4. The asymptotic 
results (equation (3.13)) have been obtained looking at these intenection points in the r a g e  
y > 2. 

& ve +e 
3 051225 0.592 
4 0.51326 0.624 
5 0.51333 0.661 
6 0.51329 0.662 

can be obtained. For y - 6.2, finite-size estimates of U@,. are nearly independent of L 
indicating that here we are close to the tri-critical fixed point. At this point our results for 
the thermal exponents are 

~e,,=O.51iO.O1 &=0.65*0.1. (3.13) 

These values are, within their accuracy, equal to those obtained by Demda and Hermann 
[23] for the cycle model (T = 0). 

The values (3.13) are also clearly different from the values for y < 2 as given in (3.10) 
and (3.12). This is the most evident for $0. On the basis of this, we conclude that indeed 
there are two different universality classes for &collapses of BP, one including the contact 
model, the other including the cycle model. 

is in agreement with the prediction in 
(2.17). The same cannot be said about w ~ , ~ .  but we have to take into account that the error 
bar on we,c is much smaller. We can argue that, due to the maximum in our finite-size 
estimates for this exponent, we have to go to considerably larger L-values to find the true 
asymptotic behaviour. We can also remark that, in a similar study [33] of the &point of 
linear polymers, the exponent V s  = 0.55&0.01 was obtained, seemingly excluding the now 
generally accepted exact value WO = 4 [5 ] .  

Secondly, we remark that our value for 
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We think it is fair to say that the present calculations do not allow us to confirm nor 
to disprove the prediction (2.16) for v@,c. The question of whether the &point of BP (with 
holes) in the regime y > 2 (or r < 2) is in the universality class of the tri-critical zero-state 
Potts model thus remains open. 

Finally we have investigated whether the lines of @-points lie in the plane given by 
(2.18). We find that, within the numerical accuracy, this is true for y > 2, but not for the 
line of Ising transitions. 

4. The collapsed phase 

We finally turn to a study of the collapsed phase and the possibility of a collapse-collapse 
transition. A proper discussion of the collapsed phase requires the introduction of the 
concept of solvent contact [12]. A sobent contact is a perimeter edge that is not a contact, 
so that the number of such solvent contacts m in a given animal is 

m = t - I .  (4.1) 

In section 2, we showed that for y = 1, 5 -+ 00, the critical properties of BP become 
those of spanning trees, for which by definition m = c = 0, and as a consequence for large 
s, I = b = s. Furthermore, we can expect on the basis of RG ideas that the latter is true for 
all r > se,, when we look at large enough length scales. We are therefore led to predict 
that 

( I ) ,  - s for y = I ,  5 > re,, . (4.2) 

On the other hand, for the collapsed phase in the cycle model, some exact results were 
recently determined by Flesia e t  al [26]. They showed that 

(m),< - s for r = 0, y > y ~ , ~ .  (4.3) 

The cycle model includes only animals without contacts ( r  = 0) so that trivially we 
have ( I ) ,  = 0. 

One can now ask whether there exists a transition between these two physically distinct 
collapsed phases or whether quantities like, for example, (m), change analytically when we 
pass from the cycle to the contact model. Numerical evidence for such a collapse-collapse 
transition was provided in [12]. 

Using the Potts description of the interacting lattice animals we can get information 
on the asymptotic form (for y -+ CO, T + w, but keeping w = r / y  fixed) of a possible 
collapse-collapse transition line. 

Using (2.3) and (4.1) we can rewrite (2.4) as 

(4.4) 

When y + 03, equation (4.4) will contain only graphs which have m = 0, i.e. which span 
the lattice (and consequently s = N). For that case, from (2.3). I = 2s - 6 ,  and we finally 
have 
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Figure 6. Average number of contacts ( I )  versus T for y = 9 3f criticality (4.5) in a finite strip 
for L = 3.4, 5. 

where the sum is over graphs which span the lattice. It is well known [I91 that (4.5) is the 
high-temperature expansion for the q-state Potts model when q + 0 with 

w = l /(exp(J) - 1) .  (4.6) 

Thus, in the large-y, large-r region our lattice animals are described by the zero-state Potts 
model. This model is known [19] to have only a transition at Jc = 0, or for w + 03. 

In fact, at this point the graphs contributing to (4.5) become the spanning trees which we 
already encountered in section 2.2. 

In conclusion then, for y + 00 and z + ca. the only transition in the model can 
be for w + 03, or, stated otherwise, any possible collapse~ollapse transition line should 
asymptotically become parallel to the z-axis. 

We have looked for evidence of this transition again using the transfer matrix. 
Unfortunately, the technique of locating the transition using a plot of r ( r )  versus r cannot 
be applied in this case, because everywhere in the collapsed phase we have U = f ,  so a 
crossing of curves for different L values is not to be expected, and indeed turns out not to 
occur. 

An alternative method is to look at averages and fluctuations in the number of contacts. 
We have therefore looked at the average number of contacts ( I )  which is defined as 

Using the definitions (1.1) and (1.2). we can write (I) as 

(4.8) 

In figure 6 we show numerical results for ( I )  as a function of r at y = 9 for different 
values of L, These results give evidence that the collaps-ollapse transition (if it exists) 
is continuous and not first order. 
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To localize the transition one can look at the fluctuations A/ in the number of contacts: 

(4.9) 

We have made extensive explorations in the phase diagram looking for a peak in A /  
growing with L, but we did not find any evidence for such behaviour. We believe this to 
be strong numerical evidence against the existence of the collapss-collapse transition. 

5. Remarks and conclusions 

In this paper we have given numerical and analytical results for the critical behaviour of a 
model for interacting BP. We have determined the critical surface and the location of lines 
and points of higher-order transitions (figure 2) . 

For small y and 5 values the behaviour o f  large lattice animals (s + CO) is essentially 
that of non-interacting animals; we thus expect. e.g., that U = 0.64,. . [9] for animals in 
this regime. 

When one increases y or r ,  the animal collapses. For y c 2, the collapse is in the king 
universality class with the exponents given by (2.16). The animal collapses into a tree-like 
structure. 

When 2 e y < 6.48.. . , the collapse is in a different universality class with exponents 
which are possibly those of the tri-critical zero-state Potts model, and are given in (2.18). 
Further work remains to be done to confirm the predicted exponent values along that line. 
The animal collapses into a compact configuration with no contacts, but (see (4.3)) a number 
of solvent contacts proportional to s. Ihe  two collapse lines are separated by a higher-order 
critical point which is of percolation type. At this point, we expect, using the well known 
percolation exponent, that v = - and Q = -1- 4 48 - - 91‘ 

Finally, we have given numerical evidence for the presence of  only one collapsed phase. 
The results presented here can be extended in several directions. In section 1, we 

discussed the exponential growth of the quantity Z, for large s. Magnetic-like exponents 
occur in the corrections to this leading behaviour. More precisely, we expect Z, to behave as 

48 3 91 - 36 
91 

For non-interacting BP, 0 is known to be exactly 1, while on the basis of the vesicle 
analogy 0 = 2 was predicted along the cycle-model collapse branch [IO]. So far we have 
no result for 0 along the king line. It is furthermore known that, for example, along the 
percolation line for p > pc ,  or in general in a collapsed phase, that (5.3) does not always 
give the correct form of 2, 1341. 

We also did not discuss any surface exponents. In fact these are not even known 
completely for the non-interacting branched polymers [35,36]. Still, we can make some 
predictions for these exponents along the two lines of 8-collapses. 

An especially interesting exponent i s  the surface crossover exponent, which is associated 
with the adsorption of the BP onto the surface when the attraction with the boundary reaches 
a critical value (the ‘special’ surface transition [37]). 

Along the cycle-model collapse line, again using the vesicle analogy, the adsorption of 
the tri-critical BP can be related to the adsorption of a self-avoiding walk, a problem for 
which exact results exist. This leads us to predict that in this case the surface crossover 
exponent, which we denote as &, equals 5 .  I 
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Adsorption onto a surface (which is onedimensional in d = 2) is not possible in general, 
because it would imply the existence of a phase transition in d = 1. Only for models like 
O(n)-models with n i 1 is such a transition is possible. Therefore, we are led to predict 
that along the ‘king’-line of @-transition there is no adsorption possible. If we denote by 
w, the ‘critical value’ of some fugacity for monomer-surface interactions then we expect 
w, to diverge when r goes to tg,, from below (if we consider, e.g., the case y = I). 

We are currently investigating these adsorption processes, because a confirmation of 
the above predictions could give considerable further evidence for the correctness of the 
universality classes which we proposed here. 

The model we have studied can be related to the ‘solvent’ model of Flesia et a1 [12]. 
The authors of that reference study a model in the canonical ensemble (i.e. for fixed s) with 
a free energy ZF,, which is defined as 

ZF,s = umwr 

where the sum runs over the set of all distinct BP with s (fixed!) occupied edges, m 
solvent contacts and I contacts. Comparing with (4.4) we immediately see that this is 
just our model in the canonical ensemble with U = y-’ lz .  Using these relations our 
phase diagram can be compared with that of [E]. In that work the location of the tri- 
critical lines is determined, together with the associated crossover exponents, using the 
exact enumeration data of [22]. While both phase diagrams agree to some extent, in the 
present work we have added substantial quantitative information. The relation with the Potts 
model as discussed in section 2 also allowed us to give conjectures on the exact values of 
the critical exponents along the tri-critical lines. Furthermore, we find no evidence of a 
collapse-collapse transition. We suspect that the transition found in [ 121 is an effect of the 
use of finite animals in a region where spanning graphs dominate. 

Finally, we can think of extending our model to d = 3. Several of the arguments in 
section 2 seem to also go through in that case. The role of the percolation line and plane 
should be similar, and we can also expect an Ising-like branch. Whether the other branch 
of collapse transitions is still tri-critical zero-state Potts is not so clem (in any case the 
exponents of that model in d = 3 are not known) but the vesicle analogy has been extended 
to this dimension, so that numerical estimates for the exponents along the branch now exist 
[38]. Of course a numerical investigation of our model in d = 3 would be much more 
difficult, but could be envisaged using techniques that were recently established for the 
simulation of d = 3-vesicles [38]. 
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